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In [G. Nu� rnberger and Th. Riessinger, Numer. Math. 71 (1995), 91�119], we
developed an algorithm for constructing point sets at which unique Lagrange inter-
polation by spaces of bivariate splines of arbitrary degree and smoothness on
uniform type triangulations is possible. Here, we show that similar Hermite inter-
polation sets yield (nearly) optimal approximation order. This is shown for differen-
tiable splines of degree at least four defined on non-rectangular domains subdivided
in uniform type triangles. Therefore, in practice we use Lagrange configurations
which are ``close'' to these Hermite configurations. Applications to data fitting
problems and numerical examples are given. � 1996 Academic Press, Inc.

INTRODUCTION

We investigate bivariate spline spaces of the following type. Let a rec-
tangle T and a partition of T into uniform subrectangles be given. We add
to each subrectangle the same diagonal and denote the resulting partition
by 21. If we add to each subrectangle both diagonals, then the resulting
partition is denoted by 22. The space of functions in Cr(T ) such that the
restriction of f to each subset of the partition is a bivariate polynomial of
total degree q is denoted by S r

q(2i), i=1, 2. These spaces are called spaces
of bivariate splines of degree q and smoothness r with respect to the parti-
tion 2i, i=1, 2. The results in this paper analogously hold for bivariate
splines defined on certain non-rectangular domains (cf. Remark 6), where
tensor products cannot be used.

In [12] (see also [11]), we developed jointly with Th. Riessinger a
method for constructing point sets which admit unique Lagrange interpola-
tion from S r

q(2i), i=1, 2. The aim of this paper is to define appropriate
Hermite interpolation sets which can be considered as a limit case of the
Lagrange interpolation sets and to show that the corresponding interpolat-
ing splines yield (nearly) optimal approximation order for S 1

q(21), q�4.
More precisely, for each f # Cq+1(T ), the interpolating spline sf # S 1

q(21)
satisfies &Di ( f&sf)&�Kh\&i for i # [0, ..., \&1], where \=4 if q=4, and
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\=q+1 if q�5. Here h denotes the maximal sidelength of the subrec-
tangles of the partition and the constant K>0 is independent of h. (In a
future paper, we will prove similar results for S 1

q(22), q�2.)
Our method is different from these known in the literature and works for

splines of arbitrary degree q�4. By using Bernstein�Be� zier techniques,
(nearly) optimal approximation order of interpolation was proved for the
following spline spaces: Sha [15], Chui 6 He [2] and Zedek [17] (see
also Jeeawock-Zedek 6 Sablonnie� re [8]) for S 1

2(22) and Sha [16] for
S 1

3(21). Moreover, approximation order two for interpolation by S 1
3(22)

was proved by Jeeawock-Zedek [7].
The type of interpolation sets used by Sha [16] is different from our

configurations. The difference is that the interpolating splines in S 1
q(21)

corresponding to our configurations can be computed locally by passing
from one triangle to the next. For computing these splines, only small
systems have to be solved instead of one large system. In practice we use
Lagrange configurations which are ``close'' to our Hermite configurations.
At the end of the paper, we give numerical examples (using up to 1700
interpolation points) including data fitting.

MAIN RESULTS

We consider bivariate spline spaces of the following type. First, the space
of bivariate polynomials of total degree q is denoted by 6� =span[xiy j:
i�0, j�0, i+j�q]. (The corresponding univariate polynomial space is
denoted by 6q .) Let a rectangle T=[a, b]_[c, d] and points a=x0<
x1< } } } <xn1

=b, c=y0<y1< } } } <yn2
=d such that xi&xi=1=h1 ,

i=1, ..., n1 ; yj&yj&1=h2 , j=1, ..., n2 , be given. By defining Ri, j=
(xi&1 , xi)_( yj&1, yj), i=1, ..., n1 ; j=1, ..., n2 , we obtain a partition of T
into subrectangles Ri, j . If the diagonal from (xi&1, yj&1) to (xi , yj) is
added to each subrectangle Ri, j , then we denote the resulting partition
by 21.

The spline spaces are defined as follows. Let integers r and q with
0�r�q be given. The space S r

q=S r
q(21) of all functions f # Cr(T ) such

that the restriction to each subset of the partition 21 is in 6� q is called space
of bivariate splines of degree q and smoothness r.

We now investigate interpolation by S r
q . In contrast to the univariate

case, it is a non-trivial problem to construct any set at which interpolation
by S r

q is possible. Therefore, we formulate the following problem: Deter-
mine a set [z1 , ..., zN] in T, where N=dim S r

q , such that for each function
f # C(T), the Lagrange interpolation problem s(zi)=f (zi), i=1, ..., N has a
unique solution s # S r

q . Such a set [z1 , ..., zN] is called Lagrange interpolation
set for S r

q .
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If we consider not only the function values of f but also partial
derivatives of f, then we speak of a Hermite interpolation problem for the
space S r

q , and the corresponding sets are called Hermite interpolation sets
for S r

q .
For describing Herniate interpolation conditions, we denote by fx and fy

the partial derivative of f for x and y, respectively. The higher partial
derivatives are denoted by fx:y ; . Given a point z=(x, y) # T, we set

Dif (z)=( fx i (z), fxi&1 y(z), ..., fxyi&1(z), fy i (z)).

The uniform norm of f is defined by & f &=maxz # T | f (z)| and for the
derivatives, we set

&Dif &=max[& fx :y; &=:�0, ;�0, :+;=i].

In the following, we construct Hermite interpolation sets for S 1
q(2

1),
q�4. This is done by describing Lagrange interpolation sets for these
spaces and then ``taking limits.'' The following construction of Lagrange
interpolation sets is a special case of the algorithms of Nu� rnberger 6
Riessinger [12].

Construction of Lagrange Interpolation Sets

For constructing Lagrange interpolation sets for S 1
q(21), q�4, we only

have to describe four basic steps. For an arbitrary subtriangle V of the
partition 21, one of the following four steps will be applied to V.

Step A. (Starting step) Choose q+1 disjoint line segments a1 , ...,
aq+1 in V. For i=1, ..., q+1, choose q+2&i distinct points on ai .

Step B. Choose q&1 disjoint line segments b1 , ..., bq&1 in V. For
i=1, ..., q&1, choose q&i distinct points on bi .

Step C. Choose q&2 disjoint line segments c1 , ..., cq&2 in V. For
i=1, ..., q&2, choose q&i distinct points on ci .

Step D. Choose q&3 disjoint line segments d1 , ..., dq&3 in V. For
i=1, ..., q&3, choose q&i&2 distinct points on di .

Given a partition 21, the construction of interpolation sets by applying
the above steps successively to the subtriangles is as follows. We choose
diagonal (respectively horizontal) line segments in the upper (respectively
lower) triangle of each subrectangle as follows; except in the first triangle
of the upper row, where we choose horizontal line segments (see Fig. 2).
The points chosen on these line segments shall not lie on the triangles
already considered.
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Fig. 1. Interpolation conditions for S 1
q(21).

First, we apply Step A to the first triangle (starting triangle) of the upper
row of the partition 21. Then passing from left to right, we apply Step B
to other triangles of the upper row.

Then we consider the next row. We apply Step B to the first and the last
triangle of this row, and passing from left to right, we alternatingly apply
Step C and D to the remaining triangles in this row.

Then we consider the next row and apply the same steps as in the row
before. We continue this method until all rows of the partition are
considered (see Fig. 1).

Fig. 2. Interpolation set for S 1
4(21).
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(Note, that the order of the steps in the starting row (upper row) is
different from the steps in all other rows.)

Next, we construct Hermite interpolation sets for S 1
q(21), q�4. This is

done by using the Lagrange interpolation sets above and by ``taking
limits.'' We consider the Lagrange configurations and let certain points and
line segments coincide. (Fig. 2 indicates which points and line segments
shall coincide.) Roughly speaking, the corresponding new interpolation
conditions are obtained as follows. If certain points on some line segment
coincide, then we pass to the directional derivatives along the line segment,
and if certain line segments coincide, then we pass to the directional
derivatives orthogonal to the line segment. In this way, we obtain the
following Hermite interpolation problem.

Construction of Hermite Interpolation Sets

Let a sufficiently differentiable function f # C(T ) be given. For defining
Hermite interpolation conditions for a spline s1

q(21), q�4, we only have to
describe four basic conditions. Let V be an arbitrary subtriangle of the par-
tition 21 and denote by U the adjacent subtriangle left of V in the same
row (if it exists). One of the four following conditions will be imposed on
the polynomial p=s|V # 6� q .

Condition A. (Starting condition) p(z1)=f (z1), px i (z2)=fxi (z2),
i=0, ..., q&1, Dip(z4)=Dif (z4), i=0, ..., q&1, where z1 , z2 , z4 are the
vertices of the first triangle in the upper row (see Fig. 2).

Condition B. Dip(z)=Dif (z), i=0, ..., q&2, where z is the vertex of
V not belonging to U.

Condition C. Dip(z)=Dif (z), i=0, ..., q&2, except py q&2(z)=fyq&2(z)
where z is the vertex of V not belonging to U.

Conditiona D. Dip(z� )=Dif (z� ), i=0, ..., q&4, where z� is the midpoint
of the diagonal of V.

Given a partition 21, we impose interpolation conditions on s by passing
from the upper to the lower row, and by passing from the first to the last
triangle in each row as follows (see Fig. 1).

First, we assign Condition A to the first triangle in the upper row of the
partition 21. Then passing from left to right, we assign Condition B to the
remaining triangles of the upper row.

Then we consider the next row. We assign Condition B to the lower
vertex z of the first triangle in this row. Then passing from left to right, we
alternatingly assign Condition C and Condition D to the remaining triangles
in the row, except that to the last triangle we assign Condition B.
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Then we consider the next row and assign the same conditions as in the
row before. We continue this method until all rows of the partition are
considered.

(Note, that the order of the conditions in the starting row (upper row)
is different from the conditions in all other rows.)

In the following, we will show that the spline satisfying these Hermite
interpolation conditions is uniquely determined (Theorem 4) and yields
(nearly) optimal approximation order (Theorem 5).

The difficulties in proving these results come from the fact that��in con-
trast to the finite element method (see e.g. Ciarlet [4], Ciarlet and Raviart
[5])��the polynomial pieces of the interpolating spline do not satisfy
dim 6� q interpolation conditions (except for the starting triangle). For
example, in the case of S 1

4(21), to most of the triangles only one respec-
tively five interpolation conditions are assigned (see Figs. 1 and 2), while
dim 6� 4=15.

Therefore, one of the main principles in the proof of Theorem 5 is to
show that the interpolating spline satisfies dim 6� q so-called weak interpola-
tion conditions on each subtriangle (see Definition 3). Then Theorem 5
follows from an auxiliary result on weak interpolation by bivariate polyno-
mials, given next.

Let a triangle W with vertices (0, 0), (*1 , 0) and (*2 , *3), where *3>0,
be given. Moreover, let 0�y0� } } } �yq�*3 and for each j # [0, ..., q],
x0, j� } } } �xq&j, j be given such that all points zi, j=(xi, j , yj) are contained
in W. To each point zi, j , we assign integers

:i, j=max[:: xi&:, j= } } } =xi, j]
and

;j=max[;: yj&;= } } } =yj].

The following result on weak interpolation holds.

Lemma 1. Let a function f # Cq+1(W), a set of bivariate polynomials
[ ph # 6� q : h # (0, 1]] and an integer _ with 1�_�q+1 be given. If there
exists a constant K>0 such that for all h # (0, 1],

|( f&ph)x:i, j y ;j (hzi, j)|�Kh_&:i, j&;j, i=0, ..., q&j ; j=0, ..., q, (1)

then there exists a constant K� >0 such that for all h # (0, 1] and
| # [0, ..., _&1],

&D|( f&ph)&hW�K� h_&|. (2)

(The constant K� >0 depends on K, q, &Dq+1f &, the smallest angle of W and
is independent of h.)
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Proof. It is well known (see e.g. Chui [1]) that for all h # (0, 1], there
exists a unique polynomial p~ h # 6� q which satisfies the interpolation
conditions

( p~ h)x :i, j y;j (hzi, j)=fx:i, j y;j (hzi, j), i=0, ..., q&j; j=0, ..., q. (3)

It follows from Theorem 4 in Ciarlet 6 Raviart [5] that there exists a con-
stant C1>0 such that for all h # (0, 1] and | # [0, ..., q],

&D|( f&p~ h)&hW�C1 hq+1&|,

where C1 depends on q, &Dq+1f &, the smallest angle of W and is indepen-
dent of h. Therefore, we get

&D|( f&ph)&hW�&D|( f&p~ h)&hW+&D|( p~ h&ph)&hW

�C1hq+1&|+&D|( p~ h&ph)&hW .

We set Qh=p~ h&ph # 6� q and have to show that there exists a constant
C2>0 (independent of h) such that for all h # (0, 1] and | # [0, ..., _&1],

&D|Qh&hW�C2 h_&|. (4)

Since the interpolating polynomials considered here are uniquely deter-
mined, the polynomial Qh can be written in the form

Qh(z)= :

j=0, ..., q
i=0, ..., q&j ;

Lh, i, j (z)(Qh)x :i, j y;j (hzi, j), (5)

where Lh, i, j are the fundamental polynomials satisfying the interpolation
conditions

(Lh, i, j)x:+, & y;&(hz+, &)=$ (i, j), (+, &) ,

where $(i, j), (+, &) is 1 if (i, j)=(+, &), and 0 if (i, j){( +, &), for +=0, ..., q&&;
&=0, ..., q. Moreover, for all z # hW,

Lh, i, j (z)=h:i, j+;jL1, i, j \ 1
h

z+ . (6)

This equation holds, since the polynomial on the right side of (6) satisfies
the same interpolation conditions as Lh, i, j . It follows from assumption (1) that

(Qh)x :i, j y;j (hzi, j)|=|( p~ h&ph)x:i, j y;j (hzi, j)|

=|( f&ph)x:i, j y;j (hzi, j)|

�Kh_&:i, j&;j.
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Then it follows from (5) and (6) that for all | # [0, ..., _&1],

&D|Qh&hW� :

j=0, ..., q
i=0, ..., q&j ;

Kh_&:i, j&;j &D|Lh, i, j&hW

= :

j=0, ..., q
i=0, ..., q&j ;

Kh_&:i, j&;j h:i, j+;j&| &D|L1, i, j&W

=\K :

j=0, ..., q
i=0, ..., q&j ;

&D|L1, i, j&W+ h_&|.

By denoting the term in brackets by C2 , we get (4). This proves Lemma 1. K

Remark 2. (i) The proof of Lemma 1 shows that Lemma 1 also holds
if (0, 1] is replaced by an arbitrary subset of (0, 1].

(ii) Moreover, a univariate version of Lemma 1 holds for
f # Cq+1[0, 1] (with the same proof): Let a set of univariate polynomials
[gh # 6q : h # (0, 1]], points 0�t0� } } } �tq�1 and an integer _ with
1�_�q+1 be given. For + # [0, ..., q], we set #+=max[#: t+&#= } } } =t+].
If there exists a constant C>0 such that for all h # (0, 1],

|( f&gh)(#+) (ht+)|�Ch_&#+, +=0, ..., q,

then there exists a constant C� >0 such that for all h # (0, 1] and
| # [0, ..., _&1],

&( f&gh)(|)&[0, h]�C� h_&|.

For simplicity, we use the following definition.

Definition 3. We say that a set of bivariate polynomials [ ph # 6� q :
h # (0, 1])] weakly interpolates f on W if there exists a set of points [zi, j :
i=0, ..., q&j; j=0, ..., q] as in Lemma 1 such that (1) holds with _=q+1.
If the context is clear, then we simply say that ph # 6� q weakly interpolates
f on hW. Moreover, in this case we also say that ( ph)y;j # 6� q&;j weakly
interpolates fy ;j on the line segment [(x, y): y=hyj] & hW, j=0, ..., q.

We now show that the spline satisfying the Hermite interpolation condi-
tions above (see Conditions A-C) is uniquely determined.

Theorem 4. For each sufficiently differentiable function f # C(T ), there
exists a unique spline sf # S 1

q(2
1), q�4, which satisfies the Hermite inter-

polation conditions above.
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Proof. Let a spline s # S 1
q(21), q�4, be given which satisfies the homo-

geneous interpolation conditions. By applying the arguments in the proof
of Theorem 5, we can show that s=0 on T. In the proof of Theorem 5, it
will be shown that the interpolating spline satisfies dim 6� q weak interpola-
tion conditions on each subtriangle of 21. By using the same arguments, it
follows in the case of homogeneous interpolation conditions that s satisfies
dim 6� q homogeneous interpolation conditions on each subtriangle which
implies that s=0 on the subtriangles. This is done as follows. First, it
follows that s=0 on the first triangle of the upper row of the partition 21.
Then passing from left to right, it follows that s=0 on the remaining tri-
angles of the upper row. Then we consider the next row. It follows that
s=0 on the first triangle of this row. Again passing from left to right, it
follows that s=0 on the remaining triangles of this row. By proceeding in
this way, we get that s=0 on T. This proves Theorem 4. K

The next result shows that our Hermite interpolation method yields
(nearly) optimal approximation order. We denote by # the angle between
the horizontal and diagonal lines of the partition 21. Moreover, we set
h=max[h1 , h2], where h1=xi&xi&1 , i=1, ..., n1 , and h2=yj&yj&1 ,
j=1, ..., n2 . In Theorem 5, the norm denotes the maximum of the uniform
norm over all subtriangles of the partition (w.r.t. the polynomial pieces).

Theorem 5. For each function f # Cq+1(T ), there exists a constant K>0
such that for the unique interpolating spline sf # S 1

q(2
1) in Theorem 4 and for

all i # [0, ..., \&1],

&Di ( f&sf)&�Kh\&i,

where \=4 if q=4, and \=q+1 if q�5. (The constant K>0 depends on
q, #, &Dq+1f & and is independent of h.)

Proof. Let a partition 21 of T be given. The partition 21 depends on h.
The proof will show that it suffices to consider the partition of Fig. 2. Let
sf # S 1

q(2
1), q�4, be the unique interpolating spline of f. The spline sf, h=sf

and each subtriangle Ti, h=Ti of the partition depends on h. We first con-
sider the case when q�5. We consider each subtriangle Ti, h separately and
may assume that it is of the form as in Lemma 1. The method of proof is
to show that for each subtriangle Ti, h , the polynomial pi, h=sf, h |Ti, h # 6� q

weakly interpolates f on Ti, h . Since only special values of h can occur,
we apply Lemma 1 in the sense of Remark 2, (i). Then it follows that
Theorem 5 holds for q�5. For simplicity we write Ti , sf and pi instead of
Ti, h , sf, h and pi, h . Thus we have to show
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Claim. For each subtriangle Ti , the polynomial pi=sf |Ti # 6� q weakly
interpolates f on Ti .

We start with the subtriangle T1 . The Claim is true for T1 , since p1 # 6� q

even interpolates f on T1 . Next, we consider the subtriangle T2 . In the
following, we will use the fact that certain higher derivatives (in direction
of r) of p1 and p2 coincide, although sf is only in C1(T). We denote by
r=(r1 , r2) the unit vector in direction of the diagonal and by
r==(&r2 , r1). First, we show

Claim 1. For all : # [0, 1], ( p2)(r=): # 6� q&: weakly interpolates f(r=): on
[z2 , z4].

Proof. We first note that for all : # [0, ..., q], ( p1)r :=( p2)r: and
( p1)r=r:=( p2)r=r: on the diagonal between T1 and T2 , since sf # C1(T ). The
fact that similar statements hold for all pairs of adjacent triangles is used
in the arguments below. First, it follows from the interpolation conditions
that p2 # 6� q interpolates f on [z2 , z4]. Then it follows from the univariate
version of Lemma 1 (see Remark 2) that for all : # [0, ..., q],

&( f&p2)r: &[z2, z4]�K1 hq+1&:

for some constant K1>0. Therefore,

|( f&p2)r= (z2)|= }& 1
r2

( f&p2)x (z2)+
r1

r2

( f&p2)r (z2) }�r1

r2

K1 hq.

(Here and in the following, we use that for F # C*(T),

F(:1R1+:2R2)*= :
*

+=0
\*

++ :*&+
1 :+

2 FR1
*&+R 2

+ ,

where R1 , R2 and :1R1+:2R2 are unit vectors and * is a natural number.)
Then by the interpolation conditions of p2 at z4 we get that ( p2)r= # 6� q&1

weakly interpolates fr= on [z2 , z4]. This proves Claim 1.

By using Claim 1, we will show

Claim 2. For all : # [0, ..., q&2], ( p2)y : # 6� q&: weakly interpolates fy :

on [z4 , z5].

Proof. We prove Claim 2 by induction on :. First, it follows from the
interpolation conditions that Claim 2 holds for :=0. We assume that
Claim 2 holds for : # [0, ..., j], j�q&3, and show that Claim 2 holds for
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j+1. For doing this, we will show that for all : and ; with :+;=j+1
and :+;=j+2,

|( f&p2)r:x; (z4)|�K2hq+1&:&; (7)

for some constant K2>0. First, we assume that (7) holds. Then it follows
that

|( f&p2)y j+1 (z4)|= } :
j+1

&=0

(&1)& \j+1
& + \ 1

r2+
j+1&&

\r1

r2+
&

( f&p2)r j+1&&x & (z4) }
�2 j+1 \ 1

r2+
j+1

K2hq&j.

Moreover, we get

|( f&p2)y j+1x(z4)|

= } :
j+1

&=0

(&1)& \j+1
+ + \ 1

r2+
j+1&&

\r1

r2+
&

( f&p2)r j+1&&x &+1 (z4) }
�2 j+1 \ 1

r2+
j+1

K2hq&j&1.

It follows from these inequalities and the interpolation conditions that
Claim 2 holds for :=j+1.

Therefore, it remains to show (7). First, it follows from Claim 1 and
Lemma 1 (univariate version) that for all + # [0, 1] and & # [0, ..., q&1],

|( f&p2)(r=)+ r& (z4)|�K3hq+1&+&&

for some constant K3>0. Then it follows that for all : # [ j, j+1],

|( f&p2)r:x (z4)|=|r1( f&p2)r:+1 (z4)&r2( f&p2)r:r = (z4)|�2K3 hq&:.

Now, let ;�2 and :�j be given. Then it follows from the induction
hypothesis and Lemma 1 (univariate version) that for all +�j and &�q&j

&( f&p2)y +x & &[z4, z5]�K4hq+1&+&&

for some constant K4>0. This implies that

|( f&p2)r:x; (z4)|= } :
:

+=0
\:

++ r +
2r:&+

1 ( f&p2)y+x:&++; (z4) }�2:K4hq+1&:&;.

This proves Claim 2.
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By using Claim 1 and Lemma 1 (univariate version), we get

|( f&p2)y (z2)|= }&r1

r2

( f&p2)x (z2)+
1
r2

( f&p2)r (z2) }�K5hq (8)

for some constant K5>0. Since by the interpolation conditions
( f&p2)(z2)=0 and ( f&p2)x (z2)=0, it follows from (8) and Claim 2 that
the Claim is true for T2 . Next, we consider the subtriangle T3 and argue
analogously as for T2 . We first prove

Claim 3. For all : # [0, 1], ( p3)x : # 6� q&: weakly interpolates fx : on
[z2 , z5].

Proof. First, it follows from (8) and the interpolation conditions at z5

that the claim is true for :=0. Moreover, by Claim 1 and Lemma 1
(univariate version)

|( f&p2)ry (z2)|=|r2( f&p2)rr (z2)+r1 ( f&p2)rr= (z2)|�K6hq&1

for some constant K6>0. Since p2 # 6� q weakly interpolates f on [z2 , z5],
it follows from Lemma 1 (univariate version) that

|( f&p2)yx (z2)|= } 1
r1

( f&p2)yr (z2)&
r2

r1

( f&p2)yy (z2) }�K7hq&1

for some constant K7>0. Therefore, it follows from the interpolation con-
ditions at z2 and z5 that Claim 3 is true for :=1.

By using Claim 3, we can show analogously as in the proof of Claim 2
that for all : # [0, ..., q&2] and ; # [0, 1],

|( f&p3)(r=) :r ; (z5)|�K8 hq+1&:&;

for some constant K8>0. Together with the interpolation conditions at z3 ,
we get

Claim 4. For all : # [0, ..., q&2], ( p3)(r=) : # 6� q&: weakly interpolates
f(r =) : on [z3 , z5].

By using (8) and the interpolation conditions at z2 , we get

( f&p3)(z2)=0, |( f&p3)r (z2)|�K9hq and |( f&p3)r = (z2)|�K9hq

for some constant K9>0. This shows that the Claim is true for T3 . Next,
we consider the subtriangle T4 . Analogously as above by using Claim 4
(for :=0, 1), we get
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Claim 5. For all : # [0, ..., q&2], ( p4)y : # 6� q&: weakly interpolates fy :

on [z5 , z6]. (In particular, for all : # [0, ..., q&2] and ; # [0, 1],
|( f&p4)y:x ; (z5)|�K10hq+1&:&; for some constant K10>0.)

This together with the interpolation conditions at z3 shows that the
Claim is true for T4 .

Next, we consider the subtriangle T5 . Analogously as above, by using
Claim 2 (for :=0, 1), we get

Claim 6. For all : # [0, ..., q&2], ( p5)(r=) : # 6� q&: weakly interpolates
f(r =) : on [z5 , z7]. (In particular, for all : # [0, ..., q&2] and ; # [0, 1],
|( f&p5)(r=) :r ; (z5)|�K11hq+1&:+; for some constant K11>0.)

This together with the interpolation conditions at z4 shows that the
Claim is true for T5 .

Next, we consider the subtriangle T6 . The Claim for T6 can be shown
analogously as for T4 with the only exception that for T4 we have
( f&p4)y q&2 (z6)=0, while for T6 the condition ( f&p6)y q&2 (z8)=0 is not
given. On the other hand, it suffices to show that

|( f&p6)yq&2 (z8)|�K12h3 (9)

for some constant K12>0. This is done as follows. We first show

Claim 7.

|( f&p6)yy (z5)|�|( f&p2)yy (z5)|+K13hq&1

for some constant K13>0.

Proof.

( f&p6)yy (z5)

=
1
r2

( f&p6)yr (z5)&
r1

r2

( f&p7)yx (z5)

=
1
r2 \

1
r2

( f&p5)rr (z5)&
r1

r2

( f&p5)xr (z5)+
&

r1

r2 \&
r1

r2

( f&p4)xx (z5)&
1
r2

( f&p4)rx (z5)+
=

1
r2 \

1
r2

( f&p5)rr (z5)&
r1

r2

(r1( f&p2)xx (z5)+r2( f&p2)xy (z5))+
&

r1

r2 \&
r1

r2

( f&p4)xx (z5)&
1
r2 \

1
r1

( f&p3)rr (z5)&
r2

r1

( f&p3)ry (z5)++
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=
1
r2 \

1
r2

( f&p5)rr (z5)&
r1

r2

(r1( f&p2)xx (z5)+r2( f&p2)xy (z5))+
&

r1

r2 \&
r1

r2

( f&p4)xx (z5)&
1
r2 \

1
r1

( f&p3)rr (z5)

&
r2

r1

[r2( f&p2)yy (z5)+r1( f&p2)xy (z5)]++
Since sf satisfies q+1 interpolation conditions on each edge of the partition
which contains z5 (except on [z5 , z8]), it follows from Lemma 1
(univariate version) that the above second partial derivatives are bounded
by hq&1 up to some constant. Since ( f&p2)xy (z5)=0, it follows that there
exists a constant K13>0 such that

|( f&p6)yy (z5)|�|( f&p2)yy (z5)|+K13hq&1.

This proves Claim 7.

Since ( f&p2)yy (z5)=0, it follows from Claim 7 that |( f&p6)yy (z5)|�
K13 hq&1. This together with the interpolation conditions at z5 and z8 shows
that p6 # 6� q weakly interpolates f on [z5 , z8]. Therefore, it follows from
Lemma 1 (univariate version) that (9) holds. This proves the Claim for T6 .

Next, we consider the subtriangle T7 . From Claim 5 we get

Claim 8. For all : # [0, 1], ( p7)y: # 6� q&: weakly interpolates fy: on
[z5 , z6]. Moreover, from the proof of (9) and the interpolation conditions at
z5 and z6 follows

Claim 9. For all : # [0, 1], ( p7)x : # 6� q&: weakly interpolates fx : on
[z5 , z8]. By using Claims 8 and 9, analogously as above we can show

Claim 10. For all : # [0, ..., q&2], ( p7)(r=) : # 6� q&: weakly interpolates
f(r =) : on [z6 , z8]. (In particular, for all : # [0, ..., q&2] and ; # [0, 1],
|( f&p7)(r=): r; (z6)|�K14hq+1&:&; and |( f&p7)(r=) : r; (z8)|�K14hq+1&:&;

for some constant K14>0.) This together with the interpolation conditions at
z5 shows that the Claim is true for T7 . FinaIly, the Claim for T8 follows
analogously as for T4 .

Now, for a general partition we argue as follows. We first consider the
upper row. By passing from left to right, we apply the arguments for
T1 , ..., T4 . Then we consider the next row. We apply the arguments for T5

to the first triangle of this row. Then we alternatingly apply the arguments
for T6 and T7 to the remaining triangles of this row except to the last
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triangle. We apply the arguments for T8 to the last triangle. Then we con-
sider the next row and argue as in the row before until all rows are con-
sidered. This proves Theorem 5 for q�5.

Finally we consider the case q=4. The proof for q=4 is completely
analogous to the case q�5 with the following exception. Let wi be an inte-
rior grid point and gj be a suitable polynomial piece of sf such that
(gj)yq&2 (wi) is defined. Then as shown for q�5, the value |( f&gj)yq&2(wi)|
is bounded by h3 up to some constant, while for q=4 this value is only
bounded by h2 up to some constant. This will be proved in the following.
For simplicity, we consider the first column of the partition and use a new
notation as indicated in Fig. 3. We set

hi=sf |Vi , i=1, ..., n2 .

It follows from the proof of Claim 7 that

|( f&hi+1)yy (wi)|�( f&hi)yy (wi)|+K15h3, i=1, ..., n2&1 (10)

for some constant K15>0. We will show that

|( f&hi+1)yy (wi+1)|�|( f&hi+1)yy (wi)|+K16h3, i=1, ..., n2&1 (11)

for some constant K16>0. We first assume that (11) holds. Then it follows
from (10) and (11) that for all i # [2, ..., n2],

|( f&hi)yy (wi)|�|( f&hi)yy (wi&1)|+K16h3

�|( f&hi&1)yy (wi&1)|+(K15+K16)h3

� } } }

�|( f&h1)yy (w1)|+(i&1)(K15+K16)h3

�n2(K15+K16)h3

=
d&c

h2

(K15+K16)h3=K17h2 (12)

for some constant K17>0.
We finally prove (11). Let i # [1, ..., n2&1] be given. Let h� i+1 be a

polynomial in 6� 4 such that

h� i+1(wi)=f (wi), (h� i+1)y (wi)=fy(wi), (h� i+1)yy (wi)=fyy(wi),

h� i+1(wi+1)=f (wi+1) and (h� i+1)y (wi+1)=fy(wi+1).
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Fig. 3. First column of the partition.

We note that the polynomial is uniquely determined on [wi , wi+1]. It
follows from the interpolation conditions for hi that

(h� i+1&hi+1)(wi)=0, (h� i+1&hi+1)y (wi)=0,

(h� i+1&hi+1)(wi+1)=0, (h� i+1&hi+1)y (wi+1)=0.

Therefore, for all w # [wi , wi+1],

(h� i+1&hi+1)(w)=*(w&wi)
2 (w&wi+1)2

for some real number *. Then it is easy to verify that

(h� i+1&hi+1)yy (wi)=(h� i+1&hi+1)yy (wi+1).

It follows that

|( f&hi+1)yy (wi+1)&( f&hi+1)yy (wi)|

=|( f&h� i+1)yy (wi+1)&( f&h� i+1)yy (wi)

+(h� i+1&hi+1)yy (wi+1)&(h� i+1&hi+1)yy (wi)|

=|( f&h� i+1)yy (wi+1)|�K16h3
2

for some constant K16>0. This inequality follows from Lemma 1
(univariate version) by using the interpolation properties of hi+1 . This
implies that

|( f&hi+1)yy (wi+1)|�|( f&hi+1)yy (wi)|+K16h3

and proves (11).
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Fig. 4. Non-rectangular domain.

Finally, the claim of Theorem 5 for q=4 follows from (12) by applying
the proof for q�5 and Lemma 1. This proves Theorem 5. K

Remark 6. A close inspection of the proof of Theorem 5 shows the
following. Theorems 4 and 5 also hold when the partitions of T=[a, b]_
[c, d ] are non-uniform, where h1=max[xi&xi&1: i=1, ..., n1], h2=
max[ yi&yi&1 : i=1, ..., n2], h=max[h1 , h2] and # denotes the smallest
angle which appears in the subtriangles of the partition. Moreover, the
results also hold for splines defined on any simply connected subset of
[a, b]_[c, d] which is the union of given subtriangles such that every pair
of successive subtriangles has a common edge (see Fig. 4). We note that for
non-rectangular domains of this type, tensor products cannot be used.

DATA FITTING

We now consider the case when only data fi on certain points (ui , vi) in
T=[a, b]_[c, d] are given (instead of a function f # C(T )) which we want
to approximate by S 1

q(21), q�4. First, we describe the method for the sim-
plest case.

We set q~ =3 if q=4, and q~ =q, if q�5. Let points a=u0<u1< } } } <
um1

=b, c=v0<v1< } } } <vm2
=d, and a uniform partition 21 of T be

given such that each subtriangle of 21 contains dim 6� q~ =(q~ +1)(q~ +2)�2
points (ui , vi). For each point (ui , vi), let a real number fi be given.

In the first step, we interpolate the given data fi on each subtriangle by
a polynomial. It is well known (see e.g. Chui [1]) that for each subtriangle
Tj of 21 there exists a unique pj # 6� q~ such that

pj (ui , vi)=fi

for every point (ui , vi) in Tj . The resulting spline s~ # S 0
q~ (21) is continuous,

if there are q~ +1 interpolation points on every edge of the subtriangles.
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In the second step, we interpolate the resulting function s~ by a differen-
tiable spline s # S 1

q(21) which satisfies the Hermite interpolation conditions
as in Theorem 4 for s~ instead of f.

We now consider the approximation order of this method. Therefore, let
a function f # Cq+1(T ) be given and fi=f (ui , vi) for all points (ui , vi) in T.
It follows from Ciarlet 6 Raviart [5] that there exists a constant K� >0
(independent of h) such that for all i # [0, ..., q~ ],

&Di ( f&s~ )&�K� hq~ +1&i, (13)

where h corresponds to the partition 21 (as in Theorem 5). Since s inter-
polates s~ , it follows from (13) that s interpolates f up to an error of order
q~ +1. Now, the proof of Theorem 5 (by using Lemma 1 on weak interpola-
tion) shows that only this is needed to get the estimate (as in Theorem 5)
that for all i # [0, ..., \&1],

&Di ( f&s)&�K� h\&i,

where \=4 if q=4, and \=q+1 if q�5.
This two step method can be applied in the following more general cases.

Let uniform or scattered data in T be given. If it is possible to get a
piecewise polynomial s~ on T which interpolates or approximates the given
data up to an error of order at most q~ +1, then we can interpolate s~ by a
spline s # S 1

q(2
1) and get the same approximation order for s. Moreover,

this method can also be applied to simply connected subsets of T as in
Remark 6.

NUMERICAL EXAMPLES

In practice, we use Lagrange configurations which are ``close'' to our
Hermite configurations (see Fig. 2). In the computation of the interpolating
spline, only small systems have to be solved instead of one large system.
This is done by computing the spline on the starting triangle and then
passing from one triangle to the next as in the definition of the interpola-
tion sets.

The dimension of bivariate spline spaces of the above type was deter-
mined by Chui 6 Wang [3] and Schumaker [14]. For uniform partitions,
a basis of such spaces was given by Chui 6 Wang [3] and Dahmen 6
Micchelli [6]. Such a basis consists of bivariate polynomials, truncated
power functions and cone splines which can easily be defined by univariate
B-splines (cf. the survey [10]).
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TABLE I

Interpolation of f1

n dn =n $n =~ n $�

5 213 5.61_10&2 4.98_10&2

6 291 1.23_10&2 1.29_10&2

7 381 1.29_10&2 1.40_10&2

8 483 5.22_10&3 5.16_10&3

9 597 2.12_10&3 3.57_10&3

10 723 1.57_10&3 &5.2 2.03_10&3 &4.6
11 861 1.04_10&3 2.27_10&3

12 1011 9.57_10&4 &3.7 1.01_10&3 &3.7
13 1173 5.81_10&4 7.75_10&4

14 1347 7.23_10&4 &4.2 5.07_10&4 &4.8
15 1533 5.09_10&4 3.33_10&4

16 1731 4.02_10&4 &3.7 2.41_10&4 &4.4

We illustrate our methods by some numerical examples. We set
T=[0, 1]_[0, 1] and consider the functions

f1(x, y)= 3
4 e&((9x&2) 2+(9y&2) 2)�4+ 3

4e&((9x+1)2�49)&((9y+1)�10)

+ 1
2e&((9x&7)2+(9y&3) 2)�4& 1

5e&(9x&4)2&(9y&7) 2

and

f2(x, y)=( y&x)6
+,

where f1 is the well-known Franke's testfunction and f2 is a function in
C 5(T )"C 6(T).

TABLE II

Interpolation of f2

n dn =n $n =~ n $�

5 213 3.35_10&5 5.56_10&4

6 291 1.38_10&5 2.97_10&4

7 381 6.41_10&6 1.68_10&4

8 483 3.36_10&6 1.01_10&4

9 597 1.90_10&6 6.84_10&5

10 723 9.57_10&7 &5.1 4.24_10&5 &3.7
11 861 6.65_10&7 2.97_10&5

12 1011 4.21_10&7 &5.0 2.21_10&5 &3.7
13 1173 2.64_10&7 1.56_10&5

14 1347 1.97_10&7 &5.0 1.07_10&5 &4.0
15 1533 1.41_10&7 8.72_10&6

16 1731 1.10_10&7 &4.9 7.34_10&6 &3.8
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First, we interpolate the functions f1 and f2 by splines in S 1
4(21) using

interpolation sets as in Fig. 2. Tables I and II show the cardinality dn of the
interpolation set, the corresponding error =n for S 1

4(21) and the decay expo-
nent $n=log(=n �=n$)�log(n�n$), where n$=n�2 and n=n1=n2 . Moreover, as
described in the section on data fitting, we interpolate the functions f1 and
f2 on each subtriangle of the partition 21 by a polynomial in 6� 3 and
then interpolate the resulting spline in S 0

3(21) by a spline in S 1
4(21). The

following tables show the corresponding error =~ n , i.e. the deviation of the
interpolating splines in S 1

4(21) from the functions f1 and f2 , and the decay
exponent $� n=log(=~ n �=~ n$)�log(n�n$), where n$=n�2.
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