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In [G. Nirnberger and Th. Riessinger, Numer. Math. 71 (1995), 91-119], we
developed an algorithm for constructing point sets at which unique Lagrange inter-
polation by spaces of bivariate splines of arbitrary degree and smoothness on
uniform type triangulations is possible. Here, we show that similar Hermite inter-
polation sets yield (nearly) optimal approximation order. This is shown for differen-
tiable splines of degree at least four defined on non-rectangular domains subdivided
in uniform type triangles. Therefore, in practice we use Lagrange configurations
which are “close” to these Hermite configurations. Applications to data fitting
problems and numerical examples are given.  © 1996 Academic Press, Inc.

INTRODUCTION

We investigate bivariate spline spaces of the following type. Let a rec-
tangle T and a partition of 7 into uniform subrectangles be given. We add
to each subrectangle the same diagonal and denote the resulting partition
by 4'. If we add to each subrectangle both diagonals, then the resulting
partition is denoted by 42 The space of functions in C"(T) such that the
restriction of f to each subset of the partition is a bivariate polynomial of
total degree ¢ is denoted by S;(Ai), i=1, 2. These spaces are called spaces
of bivariate splines of degree q and smoothness r with respect to the parti-
tion 4°, i=1, 2. The results in this paper analogously hold for bivariate
splines defined on certain non-rectangular domains (cf. Remark 6), where
tensor products cannot be used.

In [12] (see also [11]), we developed jointly with Th. Riessinger a
method for constructing point sets which admit unique Lagrange interpola-
tion from S’(4'), i=1,2. The aim of this paper is to define appropriate
Hermite interpolation sets which can be considered as a limit case of the
Lagrange interpolation sets and to show that the corresponding interpolat-
ing splines yield (nearly) optimal approximation order for S }](Al), q=4

More precisely, for each f'e C?*!(T), the interpolating spline s, € S}(4")
satisfies | D'(f—s,)|| <Kh”~ ' for i€ {0, .., p—1}, where p=4 if g =4, and
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p=q+1 if g=5. Here h denotes the maximal sidelength of the subrec-
tangles of the partition and the constant K >0 is independent of 4. (In a
future paper, we will prove similar results for S (4%), ¢ >2.)

Our method is different from these known in the literature and works for
splines of arbitrary degree ¢>4. By using Bernstein—Bézier techniques,
(nearly) optimal approximation order of interpolation was proved for the
following spline spaces: Sha [15], Chui & He [2] and Zedek [17] (see
also Jeeawock-Zedek & Sablonniére [8]) for S3(4%) and Sha [16] for
S(4"). Moreover, approximation order two for interpolation by S}(4?)
was proved by Jeeawock-Zedek [7].

The type of interpolation sets used by Sha [16] is different from our
configurations. The difference is that the interpolating splines in S)(4")
corresponding to our configurations can be computed locally by passing
from one triangle to the next. For computing these splines, only small
systems have to be solved instead of one large system. In practice we use
Lagrange configurations which are “close” to our Hermite configurations.
At the end of the paper, we give numerical examples (using up to 1700
interpolation points) including data fitting.

MAIN RESULTS

We consider bivariate spline spaces of the following type. First, the space
of bivariate polynomials of total degree q is denoted by IT=span{xy’:
i>0,j>0,i+j<gq}. (The corresponding univariate polynomial space is
denoted by I7,.) Let a rectangle T=[a,b] x[c, d] and points a =x,<
X < <x,=b, c=y,<y;<---<y,=d such that x,—x,_,=h,
i=1,.,n; y;—y,_1=hy, j=1,..,n,, be given. By defining R, ;=
(x; 1, x)x(y;_1,y,), i=1,.,n; j=1, .., n,, we obtain a partition of T
into subrectangles R, ;. If the diagonal from (x;, ,,y, ) to (x;,y;) is
added to each subrectangle R, ;, then we denote the resulting partition
by 4.

The spline spaces are defined as follows. Let integers r and ¢ with
0<r<gq be given. The space SZI:S;(A') of all functions f'e C"(T) such
that the restriction to each subset of the partition 4" is in 17‘, is called space
of bivariate splines of degree q and smoothness r.

We now investigate interpolation by S7. In contrast to the univariate
case, it is a non-trivial problem to construct any set at which interpolation
by S§7 is possible. Therefore, we formulate the following problem: Deter-

ijo

mine a set {z,, .., zy} in 7, where N =dim S, such that for each function
fe C(T), the Lagrange interpolation problem s(z;)=f(z;), i=1,.., N has a
unique solution s € S7,. Such a set {zy, .., zy} is called Lagrange interpolation

set for S;.
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If we consider not only the function values of f but also partial
derivatives of f, then we speak of a Hermite interpolation problem for the
space S/, and the corresponding sets are called Hermite interpolation sets
for S7.

For describing Herniate interpolation conditions, we denote by f, and f,
the partial derivative of f for x and y, respectively. The higher partial
derivatives are denoted by f\+s. Given a point z=(x, y) e T, we set

fo(Z) = (fxi(z)sfxi’ly(z)i "'!.fxy"’l(z)!'fy"(z))'

The uniform norm of f is defined by | f||=max._,|f(z)| and for the
derivatives, we set

1D || = max{|| fyas || =a=0, B =0, 0+ f=i}.

In the following, we construct Hermite interpolation sets for S(‘I(A ),
g=4. This is done by describing Lagrange interpolation sets for these
spaces and then “taking limits.” The following construction of Lagrange
interpolation sets is a special case of the algorithms of Niirnberger &
Riessinger [12].

Construction of Lagrange Interpolation Sets

For constructing Lagrange interpolation sets for S}I(Al), q =4, we only
have to describe four basic steps. For an arbitrary subtriangle V' of the
partition 4', one of the following four steps will be applied to V.

Step A. (Starting step) Choose ¢+ 1 disjoint line segments a, ...,
a,,,in V. Fori=1, .., g+1, choose ¢ +2 —i distinct points on «,.

Step B. Choose ¢g—1 disjoint line segments b,,..,b, ; in V. For
i=1,..,g—1, choose ¢—i distinct points on b;.

Step C. Choose ¢ —2 disjoint line segments ¢y, ..,c, , in V. For
i=1,..,g—2, choose ¢— i distinct points on c;.

Step D. Choose ¢ —3 disjoint line segments d,, ..,d, 5 in V. For
i=1,..,qg—3, choose ¢ —i—2 distinct points on d,.

Given a partition 4', the construction of interpolation sets by applying
the above steps successively to the subtriangles is as follows. We choose
diagonal (respectively horizontal) line segments in the upper (respectively
lower) triangle of each subrectangle as follows; except in the first triangle
of the upper row, where we choose horizontal line segments (see Fig. 2).
The points chosen on these line segments shall not lie on the triangles
already considered.
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A B B
B B B
B D D
C C B
B D D
C C B

FiG. 1. Interpolation conditions for S;(4").

First, we apply Step A to the first triangle (starting triangle) of the upper
row of the partition 4'. Then passing from left to right, we apply Step B
to other triangles of the upper row.

Then we consider the next row. We apply Step B to the first and the last
triangle of this row, and passing from left to right, we alternatingly apply
Step C and D to the remaining triangles in this row.

Then we consider the next row and apply the same steps as in the row
before. We continue this method until all rows of the partition are
considered (see Fig. 1).

21 22 23
T] T3
T T,
/
Z4 Z5 26
Ty Ty
1g Ty
27 28 29

FIG. 2. Interpolation set for S}i(4").
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(Note, that the order of the steps in the starting row (upper row) is
different from the steps in all other rows.)

Next, we construct Hermite interpolation sets for S ;(A‘), g =4. This is
done by using the Lagrange interpolation sets above and by “taking
limits.” We consider the Lagrange configurations and let certain points and
line segments coincide. (Fig. 2 indicates which points and line segments
shall coincide.) Roughly speaking, the corresponding new interpolation
conditions are obtained as follows. If certain points on some line segment
coincide, then we pass to the directional derivatives along the line segment,
and if certain line segments coincide, then we pass to the directional
derivatives orthogonal to the line segment. In this way, we obtain the
following Hermite interpolation problem.

Construction of Hermite Interpolation Sets

Let a sufficiently differentiable function fe C(T) be given. For defining
Hermite interpolation conditions for a spline s;(A ), ¢ =4, we only have to
describe four basic conditions. Let V" be an arbitrary subtriangle of the par-
tition 4' and denote by U the adjacent subtriangle left of V in the same
row (if it exists). One of the four following conditions will be imposed on
the polynomial p=s|, € ﬁq.

Condition A. (Starting condition) p(z,)=f(z,), p.i(z,)=f1i(22),
i=0,.,q9—1, Dp(z4)=Df(z,), i=0,..,q—1, where z,z,,z, are the
vertices of the first triangle in the upper row (see Fig. 2).

Condition B. D'p(z)=Df(z), i=0, .., ¢—2, where z is the vertex of
V not belonging to U.

Condition C. D'p(z)=Df(z), i=0, .., g —2, except p ,-2(z) =f,4-2(z)
where z is the vertex of V not belongmg to U.

Conditiona D. Dp(z) = D'f(2), .. ¢ —4, where 7 is the midpoint
of the diagonal of V.

Given a partition 4', we impose interpolation conditions on s by passing
from the upper to the lower row, and by passing from the first to the last
triangle in each row as follows (see Fig. 1).

First, we assign Condition A to the first triangle in the upper row of the
partition 4'. Then passing from left to right, we assign Condition B to the
remaining triangles of the upper row.

Then we consider the next row. We assign Condition B to the lower
vertex z of the first triangle in this row. Then passing from left to right, we
alternatingly assign Condition C and Condition D to the remaining triangles
in the row, except that to the last triangle we assign Condition B.
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Then we consider the next row and assign the same conditions as in the
row before. We continue this method until all rows of the partition are
considered.

(Note, that the order of the conditions in the starting row (upper row)
is different from the conditions in all other rows.)

In the following, we will show that the spline satisfying these Hermite
interpolation conditions is uniquely determined (Theorem 4) and yields
(nearly) optimal approximation order (Theorem 5).

The difficulties in proving these results come from the fact that—in con-
trast to the finite element method (see e.g. Ciarlet [4], Ciarlet and Raviart
[5])—the polynomial pieces of the interpolating spline do not satisfy
dim /7 , interpolation conditions (except for the starting triangle). For
example, in the case of S}(4"'), to most of the triangles only one respec-
tively five interpolation conditions are assigned (see Figs. 1 and 2), while
dim /7, =15.

Therefore, one of the main principles in the proof of Theorem 5 is to
show that the interpolating spline satisfies dim /7, , so-called weak interpola-
tion conditions on each subtriangle (see Definition 3). Then Theorem 5
follows from an auxiliary result on weak interpolation by bivariate polyno-
mials, given next.

Let a triangle W with vertices (0, 0), (4,,0) and (4,, 4;), where 45 >0,
be given. Moreover, let 0<y,< --- <y,<A; and for each je {0, .., g},
X ;< --- <Xx,_;;be given such that all points z, ;= (x, ;, y;) are contained
in W. To each point z; ;, we assign integers

o j=max{o: X, , ;= =x;}
and
Bi=max{f:y; z=---=y;}.

The following result on weak interpolation holds.

LemMma 1. Let a function fe C1TY W), a set of bivariate polynomials
{ps eﬁq: he (0,11} and an integer o with 1 <o <q+1 be given. If there
exists a constant K> 0 such that for all he (0, 1],

|(f_ph)x“i.jy/"/(hzi,j)| < Khaiawiﬁjﬂ i= O’ [ q_],]: 0’ e s (1)

then there exists a constant K>0 such that for all he(0,1] and
we{0,..,0—1},

DS~ pu)ll i < Kh . (2)

(The constant K >0 depends on K, q, |D?*'f ||, the smallest angle of W and
is independent of h.)
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Proof. 1t is well known (see e.g. Chui [1]) that for all 2 (0, 1], there
exists a unique polynomial p, e /T , Which satisfies the interpolation
conditions

(ﬁh)x“i,jyﬁ.f(hzi,j) :f:\’“i«jyﬁj(hzi,j)a i= 07 e g _]a ]: 05 e . (3)

It follows from Theorem 4 in Ciarlet & Raviart [ 5] that there exists a con-
stant C; >0 such that for all 2€(0,1] and we {0, ..., ¢},

ID(f = pn)llww < Crh?+1 =,

where C, depends on ¢, | DY 'f||, the smallest angle of W and is indepen-
dent of A. Therefore, we get

ID(f =)l ww < ID(f =Pl ww + 1D(Dr—pi) | ww
<C A O+ DB —pi) -

We set Q,=p,—ps eﬁq and have to show that there exists a constant
C,>0 (independent of /) such that for all h€(0,1] and we {0, .., o0 — 1},

DO llnw < C2h7 (4)

Since the interpolating polynomials considered here are uniquely deter-
mined, the polynomial Q, can be written in the form

O)(z)= Z L, i,j(Z)( 01 <= /y/f/(hzi,_/)’ (5)
Sty

where L, ,; are the fundamental polynomials satisfying the interpolation
conditions

(Lh, i,j)x“;u vy/”v(hz,u, V) = 5('}./‘)’ (u,v)»

where 6; ) (v 18 1if (4, ) = (u, v), and 0 if (i, j) # (i, v), for u =0, ..., g —v;
v=0, ..., g. Moreover, for all ze h W,

1
Lh,i,j(z):/7ai'j+ﬁle,t,j<hZ>- (6)

This equation holds, since the polynomial on the right side of (6) satisfies
the same interpolation conditions as L,, ; ;. It follows from assumption (1) that

(Qh)x“i,jyﬁj(hzi,j)| =1[(p, _Ph)x“i.jy/’j(hzi,j”
= |(<f7p/l)x“l“/‘y/jf/(hzllj)|

< Kho =i h,
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Then it follows from (5) and (6) that for all w € {0, ..., o — 1},

DO [l < Y Kho == 5 | D“L,, i llww

Il
TN
B

e
T
|
S
iy
s
~_~
S

e g —J
0,...q
By denoting the term in brackets by C,, we get (4). This proves Lemma 1. ||

Remark 2. (i) The proof of Lemma 1 shows that Lemma 1 also holds
if (0, 1] is replaced by an arbitrary subset of (0, 1].

(ii) Moreover, a univariate version of Lemma 1 holds for
fe C97'10, 1] (with the same proof): Let a set of univariate polynomials
{g e, he(0,1]}, points 0<7,< --- <t,<1 and an 1nteger o with
1<o<g+1be given. For u€ {0, .., q}, we set y, =max{y:1, ,=--- =t,}.
If there exists a constant C >0 such that for all 2e€(0, 1],

|(f—gu) 7 (ht,)] < Ch® =, =0, ... q

then there exists a constant C>0 such that for all 4e(0,1] and
we{0,..,0—1},

I(f—gn) )”[Ohj Cho—.

For simplicity, we use the following definition.

DErFINITION 3. We say that a set of bivariate polynomials {p, 617
he(0,1])} weakly interpolates f on W if there exists a set of points {z, ;:
1—0, wq—Jj;j=0, .. ¢} asin Lemma 1 such that (1) holds with ¢ = q+1
If the context is clear, then we simply say that p, € IT B weakl)i interpolates
S on hW. Moreover, in this case we also say that (p,),s € Il,_ 5 weakly
interpolates f,5 on the line segment {(x, y): y=hy;} nhW, j=0, .., q.

We now show that the spline satisfying the Hermite interpolation condi-
tions above (see Conditions A-C) is uniquely determined.

THEOREM 4. For each sufficiently differentiable function fe C(T), there
exists a unique spline s, € S }](Al), q =4, which satisfies the Hermite inter-
polation conditions above.
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Proof. Let a spline s€ S)(4"), ¢ =>4, be given which satisfies the homo-
geneous interpolation conditions. By applying the arguments in the proof
of Theorem 5, we can show that s=0 on 7. In the proof of Theorem 5, it
will be shown that the interpolating spline satisfies dim /7 , weak interpola-
tion conditions on each subtriangle of 4'. By using the same arguments, it
follows in the case of homogeneous interpolation conditions that s satisfies
dim 17,1 homogeneous interpolation conditions on each subtriangle which
implies that s=0 on the subtriangles. This is done as follows. First, it
follows that s =0 on the first triangle of the upper row of the partition 4.
Then passing from left to right, it follows that s =0 on the remaining tri-
angles of the upper row. Then we consider the next row. It follows that
s=0 on the first triangle of this row. Again passing from left to right, it
follows that s =0 on the remaining triangles of this row. By proceeding in
this way, we get that s =0 on 7. This proves Theorem 4. |

The next result shows that our Hermite interpolation method yields
(nearly) optimal approximation order. We denote by y the angle between
the horizontal and diagonal lines of the partition 4'. Moreover, we set
h=max{h,, hy}, where hy=x,—x, ,, i=1,.,n;, and hy=y,—y, |,
j=1,..,n,. In Theorem 5, the norm denotes the maximum of the uniform
norm over all subtriangles of the partition (w.r.t. the polynomial pieces).

THEOREM 5. For each function fe C1+(T), there exists a constant K> 0
such that for the unique interpolating spline s, e S}/(A Y in Theorem 4 and for
all i€ {0, ..,p—1},

ID"(f=s/)l < Kh* ",

where p=4 if g=4, and p=q+1 if ¢=5. (The constant K> 0 depends on
4, 7, |D?Tf|| and is independent of h.)

Proof. Let a partition 4" of T be given. The partition 4' depends on A.
The proof will show that it suffices to consider the partition of Fig. 2. Let
speS ;(A "), ¢ =4, be the unique interpolating spline of /. The spline s, , =,
and each subtriangle 7T, , = T; of the partition depends on A. We first con-
sider the case when ¢ > 5. We consider each subtriangle 7 , separately and
may assume that it is of the form as in Lemma 1. The method of proof is
to show that for each subtriangle T ,, the polynomial p, , =s.,|+,, eﬁq
weakly interpolates f on T ,. Since only special values of A can occur,
we apply Lemma 1 in the sense of Remark 2, (i). Then it follows that
Theorem 5 holds for ¢ > 5. For simplicity we write 7', s, and p; instead of
T, sy, and p, ;,. Thus we have to show

1
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CLAM.  For each subtriangle T;, the polynomial p,=s,|r, EH weakly
interpolates f on T;.

We start with the subtriangle 7,. The Claim is true for T, since p, € IT 4
even interpolates f on 7,. Next, we consider the subtriangle 7',. In the
following, we will use the fact that certain higher derivatives (in direction
of r) of p, and p, coincide, although s, is only in C(T). We denote by
r=(r,,r,) the unit vector in direction of the diagonal and by
7+ =(—r,, ;). First, we show

CLaM 1. For all we {0, 1}, (ps).y € f,_, weakly interpolates fi .. on
[22, z4].

Proof. We first note that for all ae{0,.., g}, (p)),«=(p,),« and
(P1),10=(p,),1,~ on the diagonal between T, and T, since s, C'(T). The
fact that similar statements hold for all pairs of adjacent triangles is used
in the arguments below. First, it follows from the interpolation conditions
that p, e IT , interpolates f'on [z,, z,]. Then it follows from the univariate
version of Lemma 1 (see Remark 2) that for all a€ {0, ..., ¢},

H(f_Pz)ra "[22,:4] <K1h4+1—a

for some constant K, > 0. Therefore,

2

l 1 1
=P el = | = b 2+ 2 (=), (22| <2 K,

(Here and in the following, we use that for Fe C*(T),

A k)
A ;
S — A= 1t X
F(othlJrotsz)”'_ z <,u>al “2FR]"“R*2‘9
0

w=

where R, R, and a; R, + a, R, are unit vectors and 4 is a natural number.)
Then by the interpolation conditions of p, at z, we get that (p,),. €1,
weakly interpolates f.. on [z,, z4]. This proves Claim 1.

By using Claim 1, we will show

CLamM 2. For all a€ {0, .., q—2}, (p,),- € Il,_, weakly interpolates f,
on [z4,zs].
Proof. We prove Claim 2 by induction on «. First, it follows from the

interpolation conditions that Claim 2 holds for « =0. We assume that
Claim 2 holds for a€ {0, ..., j}, j<g—3, and show that Claim 2 holds for
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j+ 1. For doing this, we will show that for all « and f with o+ f=j+1
and a+f=j+2,

[(f = P2t (24)| S K h7 12277 (7)
for some constant K, > 0. First, we assume that (7) holds. Then it follows
that

Jj+1 +1 1 J+1l—v -\

|(f D2) i+l 24 Z <] ><> <1> (f_pQ)r/*]"'x“ (z4)
— v I I

i+ 1
<271 l " K, hi—,
r

Moreover, we get

|(f_p2)y/+1x(z4)|
Jj+1 i+ 1 1 JH+1—v )
0 (N E)T () e etz

i+ 1
<2.1’+1<1>1+ thqf./'fl.

Fa

It follows from these inequalities and the interpolation conditions that
Claim 2 holds for a=j+ 1.

Therefore, it remains to show (7). First, it follows from Claim 1 and
Lemma 1 (univariate version) that for all g e {0, 1} and ve {0, .., g— 1},

[(f=P2) iy (20)] S KR T0Y
for some constant K5 > 0. Then it follows that for all e {j,j+ 1},
(S =pa)r Gl == P2t (Z2) = o f=pa)s (Z)| < 2K5h0 7

Now, let f>2 and a<j be given. Then it follows from the induction
hypothesis and Lemma 1 (univariate version) that for all y <jand v<g¢q—j

H(f_pz)yl’x" [ (24251 S K,h* fowey

for some constant K, > 0. This implies that

|(f_p2)r“xﬁ (24)| = Z

w=0

<O(> Py T (= Do) pusenn(24) | S 2°K4h? T b s,
u

This proves Claim 2.
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By using Claim 1 and Lemma 1 (univariate version), we get

1
[(f=p2), ()] = | == (f=p2)s (Zz)+72(f—pz)r(22) <Ksh? o (8)

for some constant Ks>0. Since by the interpolation conditions
(f—p>)(z,)=0and (f—p,),.(z,) =0, it follows from (8) and Claim 2 that
the Claim is true for 7,. Next, we consider the subtriangle 7'; and argue
analogously as for 7,. We first prove

CLAaM 3. For all ae{0,1}, (p3)-€fl, ,
[22325]'

Proof. First, it follows from (8) and the interpolation conditions at zs
that the claim is true for « =0. Moreover, by Claim 1 and Lemma 1
(univariate version)

[(f=P2)m ()| =12 f=P2) (22) + 11 (f=D2) 1 (23)] <Kgh'!

for some constant K> 0. Since p, € IT , weakly interpolates f on [z,, z5],
it follows from Lemma 1 (univariate version) that

weakly interpolates f.. on

: L ., -
(f=P2)yx (22)] = | = (f=P2),r (22) —72 (f=P2)yy (22) | < K7h77!
1 1
for some constant K, > 0. Therefore, it follows from the interpolation con-
ditions at z, and z5 that Claim 3 is true for a=1.
By using Claim 3, we can show analogously as in the proof of Claim 2

that for all a€ {0, .., ¢—2} and fe{0, 1},
[(f=P3) ity (25)] S Kgh? ™17 7F

for some constant Kg > 0. Together with the interpolation conditions at z5,
we get

CLaM 4. For all ae {0, .., q—2}, (p3), 1) €l
Sty on [z3, z5].

weakly interpolates

q—a

By using (8) and the interpolation conditions at z,, we get

(f=p)(z2) =0, [(f—p3), (z2)| < Koh? and [(f=p3)rr (22)] S Kgh?

for some constant K, > 0. This shows that the Claim is true for T’;. Next,
we consider the subtriangle 7,. Analogously as above by using Claim 4
(for ¢=0, 1), we get
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CLAM 5. For all a€ {0, .., q—2}, (p4),- €11, _, weakly interpolates f,
on [zs,z¢]. (In particular, for all o€{0,..,q—2} and pe{0,1},
I(f—Pa)yaxs (25)| S K oh? ' == for some constant K,,>0.)

This together with the interpolation conditions at z; shows that the
Claim is true for 7.

Next, we consider the subtriangle 75. Analogously as above, by using
Claim 2 (for =0, 1), we get

CLAM 6. For all ae {0, ..,q—2}, (ps),.)-€ll,_, weakly interpolates
Sty on [zs,z5]. (In particular, for all a€{0,..,q—2} and pe{0,1},
I(f—=p5)rtyrs (25)| S Ky h? T =P for some constant K, >0.)

This together with the interpolation conditions at z, shows that the
Claim is true for 7.

Next, we consider the subtriangle 7. The Claim for 7 can be shown
analogously as for 7, with the only exception that for 7, we have
(f—Pa)ya-2(26) =0, while for T4 the condition (f—ps),.-2(zg) =0 is not
given. On the other hand, it suffices to show that

|(f_P6)yH (zg)] <K12h3 9)

for some constant K, > 0. This is done as follows. We first show

CLAM 7.

|(f_p6)yy (z5)] < |(f_[72)yy (z5)] '|‘K13hq_l

for some constant K ;> 0.

Proof.
(f_pﬁ)yy (ZS)
= e po =T (= pre (25)
Iy Iy
_1 (1 = po)n (25 =L (f=ps) (z5>>
I, \r» Iy
ry

(B p ) = (=i 20
r 2

s 2

1/1 1 .
(U= GO == )+ = 22 ()

' \I'z 2

r 1

Gy SNCAEE LIV AMEN R IRy AWER))

I



130 G. NURNBERGER

1 /1 1
_L ( =)o (29) =L (1S =) (25) + oS = P2y (z5>)>
I, \r» Iy
r r 1 /1
- < (f7p4)xx (ZS) - < (fipfa)rr (ZS)
Fa\ Ty Fs \F

*:*2 [r2(f7p2)yy (z5) + rl(f7p2)xy (Zs)]>>

Since s, satisfies ¢ + 1 interpolation conditions on each edge of the partition
which contains zs; (except on [zs,zg]), it follows from Lemma 1
(univariate version) that the above second partial derivatives are bounded
by 477! up to some constant. Since (f=D2)x (z5) =0, it follows that there
exists a constant K5 >0 such that

[(f=P6)yy (z5) S I(f=P2)yy (25)] + Kysh? ™
This proves Claim 7.

Since (f—p»),, (z5) =0, it follows from Claim 7 that |(f—ps),, (z5)] <
K,;h?~ !, This together with the interpolation conditions at zs and zg shows
that pg eﬁq weakly interpolates f on [zs, zg]. Therefore, it follows from
Lemma 1 (univariate version) that (9) holds. This proves the Claim for 7.

Next, we consider the subtriangle 7';. From Claim 5 we get

CLAaM 8. For all ae{0,1}, (p;),~efl,_, weakly interpolates f,. on
[zs, z¢]. Moreover, from the proof of (9) and the interpolation conditions at
zs and z4 follows

CLAM 9. For all ae{0,1}, (p;),-€ll, , weakly interpolates f.. on
[zs, zg]. By using Claims 8 and 9, analogously as above we can show

CLam 10.  For all o€ {0, ..., q—2}, (p7) 2 €11, _, weakly interpolates
Sy on [ze,25]. (In particular, for all a€{0, .., q—2} and pe{0,1},
|(f = P7) iy (Z6) <K h'*' P and |(f = P7)rtya s (25)] <Ky httto s
for some constant K,,>0.) This together with the interpolation conditions at
zs shows that the Claim is true for T,. Finally, the Claim for Ty follows
analogously as for T,.

Now, for a general partition we argue as follows. We first consider the
upper row. By passing from left to right, we apply the arguments for
T,, .., T,. Then we consider the next row. We apply the arguments for 7T’
to the first triangle of this row. Then we alternatingly apply the arguments
for Ty and T, to the remaining triangles of this row except to the last
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triangle. We apply the arguments for T’ to the last triangle. Then we con-
sider the next row and argue as in the row before until all rows are con-
sidered. This proves Theorem 5 for ¢ > 5.

Finally we consider the case ¢=4. The proof for ¢ =4 is completely
analogous to the case ¢ > 5 with the following exception. Let w; be an inte-
rior grid point and g; be a suitable polynomial piece of s, such that
(g;),a-2(w,) is defined. Then as shown for ¢ >3, the value |(f—g;),«2(w,)|
is bounded by /* up to some constant, while for ¢ =4 this value is only
bounded by 4> up to some constant. This will be proved in the following.
For simplicity, we consider the first column of the partition and use a new
notation as indicated in Fig. 3. We set

hi=sply,i=1,.., n,.
It follows from the proof of Claim 7 that
(=R 1)y W< (=), (W)l +Kish? i=1,..,n,—1 (10)
for some constant K5 >0. We will show that
(=R 1)y Wiy DIST(f =Ry 1)y W+ Kyl =1, yny — 1 (11)

for some constant K, > 0. We first assume that (11) holds. Then it follows
from (10) and (11) that for all i€ {2, ..., n,},

[(f =Ry WAL T(f =Ry (W )| + Kyh?

< |(f_hi71)yy (W) + (K5 +K16)h3
<.
< |(f_h1)yy (W) + (i —1)(K;s +K16)h3
<ny(Kys+K6) b’

d—c

(K\s+Ko)h* =K, I* (12)

h,

for some constant K, > 0. _
We finally prove (11). Let ie{l,..,n,—1} be given. Let h;,, be a
polynomial in /7, such that

Rirw) =S 000, (Rir)y ) =L,(w0), By (0) = £, (w)),

hia(wip)=fwiy) and (%i+l)y(m}i+l):,f;y(“)i+l)'
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Wo

Vi

Va

Voo

Wny

Fi1G. 3. First column of the partition.

We note that the polynomial is uniquely determined on [w;, w; ,]. It
follows from the interpolation conditions for /, that

(%i+1_hi+1)(Wz‘):Oa (Ei+1_hi+l)y(wf):07
(ZH—I —hi )W 1) =0, (71[+1 —hi+1)y (w;i11)=0.

Therefore, for all we [w,, w, ],
(ﬁi+1 =R )W) =Aw—=w)? (w—w,;)?
for some real number /4. Then it is easy to verify that

(%i+] *hi+1)yy (w;)= (%i+1 *hi+1)yy (Wii)

It follows that
(S =his 1)y W) = (f=hi1),, (W)
= (/=R )y i) = (S =Fii1), (0))
By =hy 1)y Wi 0) = (i =By, (1)
= (/=R )y (Wi D S Kiehs
for some constant K;,>0. This inequality follows from Lemma 1
(univariate version) by using the interpolation properties of 4,,,. This

implies that
(=i )y Wi DI U =R 1)y (W) + Ki6h°

and proves (11).
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FiG. 4. Non-rectangular domain.

Finally, the claim of Theorem 5 for ¢ =4 follows from (12) by applying
the proof for ¢ =5 and Lemma 1. This proves Theorem 5. |

Remark 6. A close inspection of the proof of Theorem 5 shows the
following. Theorems 4 and 5 also hold when the partitions of T=[a, b] x
[¢,d] are non-uniform, where h, =max{x;,—x; ,: i=1,..,n}, h,=
max{y,—y,_,:i=1,..,n,}, h=max{h,, h,} and y denotes the smallest
angle which appears in the subtriangles of the partition. Moreover, the
results also hold for splines defined on any simply connected subset of
[a, b] x [ ¢, d] which is the union of given subtriangles such that every pair
of successive subtriangles has a common edge (see Fig. 4). We note that for
non-rectangular domains of this type, tensor products cannot be used.

DATA FITTING

We now consider the case when only data f; on certain points (u,, v;) in
T=[a, b]x[c, d] are given (instead of a function fe C(T)) which we want
to approximate by S ‘II(AI), q = 4. First, we describe the method for the sim-
plest case.

We set =3 if g=4, and §=gq, if ¢=5. Let points a=uy<u; < --- <
U, =b, c=vy<v,<:-- <v,,=d, and a uniform partition 4" of T be
given such that each subtriangle of A' contains dim /7 =G+ 1)(G+2)2
points (u;, v;). For each point (u;, v;), let a real number f; be given.

In the first step, we interpolate the given data f; on each subtriangle by
a polynomial. It is well known (see e.g. Chui [1]) that for each subtriangle
T; of A" there exists a unique p; ell ;7 such that

pj(uis v)=f;

for every point (u,, v;) in T,. The resulting spline §€ S g(Al) is continuous,
if there are ¢+ 1 interpolation points on every edge of the subtriangles.
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In the second step, we interpolate the resulting function § by a differen-
tiable spline s € S)(4") which satisfies the Hermite interpolation conditions
as in Theorem 4 for § instead of f.

We now consider the approximation order of this method. Therefore, let
a function fe C*"'(T) be given and f;=f(u;,, v,) for all points (u,, v;,) in T.
It follows from Ciarlet & Raviart [5] that there exists a constant K> 0
(independent of %) such that for all i€ {0, ..., §},

IDI(f=3)| <KhT+' (13)

where /i corresponds to the partition A' (as in Theorem 5). Since s inter-
polates 3, it follows from (13) that s interpolates f up to an error of order
g+ 1. Now, the proof of Theorem 5 (by using Lemma 1 on weak interpola-
tion) shows that only this is needed to get the estimate (as in Theorem 5)
that for all ie {0, .., p—1},

1D (f—s)Il < Kh* ",

where p=4if g=4, and p=g+1if g=5.

This two step method can be applied in the following more general cases.
Let uniform or scattered data in 7 be given. If it is possible to get a
piecewise polynomial § on 7" which interpolates or approximates the given
data up to an error of order at most ¢+ 1, then we can interpolate § by a
spline seS;(Al) and get the same approximation order for s. Moreover,
this method can also be applied to simply connected subsets of 7" as in
Remark 6.

NUMERICAL EXAMPLES

In practice, we use Lagrange configurations which are “close” to our
Hermite configurations (see Fig. 2). In the computation of the interpolating
spline, only small systems have to be solved instead of one large system.
This is done by computing the spline on the starting triangle and then
passing from one triangle to the next as in the definition of the interpola-
tion sets.

The dimension of bivariate spline spaces of the above type was deter-
mined by Chui & Wang [ 3] and Schumaker [ 14]. For uniform partitions,
a basis of such spaces was given by Chui & Wang [3] and Dahmen &
Micchelli [6]. Such a basis consists of bivariate polynomials, truncated
power functions and cone splines which can easily be defined by univariate
B-splines (cf. the survey [10]).
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TABLE 1

Interpolation of f;

135

n d, &, J, g, o
5 213 561 x1072 498 x102

6 291 1.23x1072 1.29x 1072

7 381 1.29x 1072 140 x 1072

8 483 522x1073 516x1073

9 597 212x 1073 357x1073

10 723 1.57x1073 —52 203x1073 —4.6
11 861 1.04x 1073 227x1073

12 1011 9.57x 104 —37 1.01x 1073 —3.7
13 1173 581 x 104 7.75x 104

14 1347 723 %1074 —4.2 507 %1074 —4.8
15 1533 5.09%x 1074 333x1074

16 1731 402x10~* —3.7 241 x10~* —44

We illustrate our methods by some numerical examples. We set
T=1[0,1]x[0,1] and consider the functions

and

3,—((9x—2)2+ 9y —2)2)/4 | 3, —((9x+1)2/49) — ((9y + 1)/10
Fi(x, y) = 2o~ (Ox=DTHOX =2/ 43— (O + 1A9) — (99 +1)/10)

2 ,3)2 _ _4)2 _ —_7)2
+%ef((9x77) + 9y —3) )/4—%6 (9x—4) 9y —17)

Ll p)=(y=x)%,

where f; is the well-known Franke’s testfunction and f, is a function in

CHTNCKT),
TABLE 11
Interpolation of f,

n d, &, J, g, )
5 213 335%x 1073 556x10~*

6 291 1.38x107° 297x 1074

7 381 6.41x 10 1.68x10~*

8 483 3361076 1.01 x10~*

9 597 1.90x10~¢ 6.84 x 103

10 723 9.57x 1077 —5.1 424x1073 —3.7
11 861 6.65x 1077 297 x 1073

12 1011 421x1077 —5.0 221x1073 —3.7
13 1173 2.64x 1077 1.56 x 103

14 1347 197 %1077 -5.0 1.07x107° —4.0
15 1533 141 x 1077 8.72x 107

16 1731 1.10x 1077 —49 7.34%x 1076 —38
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First, we interpolate the functions f, and f, by splines in S}(4') using
interpolation sets as in Fig. 2. Tables I and II show the cardinality d,, of the
interpolation set, the corresponding error ¢, for S3(4") and the decay expo-
nent J, =log(e, /¢, )/log(n/n"), where n' =n/2 and n =n, =n,. Moreover, as
described in the section on data fitting, we interpolate the functions f; and
/> on each subtriangle of the partition 4' by a polynomial in /7, and
then interpolate the resulting spline in SY(4') by a spline in S}(4"'). The
following tables show the corresponding error &,, i.e. the deviation of the
interpolating splines in S}(A4") from the functions f; and f>, and the decay
exponent o, = log(&, /Z,)/log(n/n’), where n' =n/2.
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